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The role of the entrance channel in the fusion of massive nuclei
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Abstract. The role of the entrance channel in the fusion-fission reactions leading to nearly the same super-
heavy compound nucleus is studied in the framework of dynamic model. The calculations are done for 48Ca
+ 244Pu and 74,76Ge + 208Pb reactions which could lead to formation of superheavy element Z = 114. It is
shown that for these reactions there is an energy window for the values of the bombarding energy at which
a capture probability is sufficiently large. Together with the restriction coming from the intrinsic barrier for
fusion, it helps to find an optimal value of the bombarding energy for a given projectile–target combination.

PACS. 25.70.Gh Compoud nucleus – 25.70.Jj Fusion and fusion–fission reactions

1 Introduction

The cross section for the production of the superheavy
elements depends on the choice of the projectile-target
combination and the bombarding energy Ec.m.. The
optimal choice is determined by the requirements to
have a larger fusion cross section and a larger survival
probability of a compound nucleus relative to fission. For
a given projectile-target combination, a larger value of
the bombarding energy is needed to overcome the reac-
tion barrier which is determined by the nucleus-nucleus
potential and the dynamic barriers if they exist. However,
the excitation energy of the compound nucleus increases
with the bombarding energy. It decreases the survival
probability relative to fission of a nucleus produced in
a reaction and therefore puts a restriction on the upper
value of the bombarding energy. To determine the optimal
value of Ec.m. it is necessary to analyse a fusion process
leading to compound nucleus formation. It consists of i)
capture of nuclei, which can be dynamically deformed at
the approach stage; ii) evolution of a dinuclear system
formed to fusion in a competition with quasifission; iii)
deexcitation (or fission) of a compound nucleus. The aim
of the present paper is to calculate a capture probability
and then to analyse a possible consequences of the results
obtained for the fusion probability. To do it, we require in
dynamic model to describe the initial stage of a heavy ion
collision. Such a model has been developed in our earlier
papers [1,2]. The capture probability is determined by
the dynamic aspects of the reaction mechanism and by
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the depth of the pocket in the nucleus-nucleus interaction
potential. As the examples we consider below the follow-
ing reactions: 48Ca + 244Pu and 74,76Ge + 208Pb.

2 Basic formalism

The cross section of production of the evaporation residues
(σER)

σER(E) =
∞∑
l=0

σfus
l (E, l)Wsur(E, l) (1)

is determined by the partial fusion cross section (σfus
l (E)),

as well as by the probability Wsur(E, l) that the compound
nucleus survives during a deexitation cascade. In Eq. (1)

σfus
l (E) = σcapture

l (E)PCN (E, l), (2)

σcapture
l (E) =

λ2

4π
Pcapture
l (E), (3)

where λ is a wavelength, PCN(E, l) is a factor taking into
account a decrease of the fusion probability due to din-
uclear system break up before fusion, Pcapture

l (E) is the
capture probability which depends on the collision dynam-
ics and determines the amount of partial waves leading to
capture.

The main aim of the present paper is to calculate cap-
ture probability Pcapture

l (E). To do it we will use a dy-
namic approach developed in [1,2]. In this approach, the
system of equations is derived to describe the relative mo-
tion of colliding nuclei and an evolution of their intrinsic
states during the heavy ion collisions. This system of equa-
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tions split into two subsystems. The first set of equations
describes a relative motion. These equations are

µ(R(t))
··
Rk +

∑
j

γkj [R(t)]
·
Rj (t) = −∂V [R(t)]

∂Rk
(4)

where R(t) is a relative motion coordinate and
·
R (t) is

a corresponding velocity. The second set of equations de-
scribes an evolution of the occupation numbers of the sin-
gle particle states. These equations will be shown below.

In the Eq. (4), V (R) is a nucleus-nucleus potential.
This is the first important ingredient of the Eq. (4). This
potential consists in two terms

V (R) = V0(R) + δV (R), (5)

where V0(R) is a static potential calculated in a frozen
density approximation and δV (R) is a dynamic contribu-
tion to a nucleus-nucleus potential, which is due to a rear-
rangement of the densities of the interacting nuclei during
a reaction. The nuclear part of the static nucleus-nucleus
potential V0(R) is calculated using a double - folding pro-
cedure with the effective nucleon-nucleon forces suggested
by Migdal [3] and the densities of the interacting nuclei
taken in the Woods-Saxon form

ρ
(0)
i (r,Ri(t), θi, β

(i)
2 ) =[

1 + exp

(
|r−Ri(t)| −R0i[1 + β

(i)
2 Y20(θi)]

a

)]−1

.(6)

In Eq. (6) i = 1, 2 is an index distinguishing the inter-
acting nuclei; Ri are the center of mass coordinates and
R0i are the half density radii of the interacting nuclei;
β

(i)
2 are the quadrupole deformation parameters determi-

nated by the B(E2) to the first excited 2+ state [4], and θi
are the axial symmetry axes orientations relative to R(t).
An inclusion of a dependence on θi into the expressions
for the nuclear densities ρ(0)

i give us a possibility to con-
sider fusion at different mutual orientations of the inter-
acting nuclei. The expression needed to calculate δV (R)
is given below. The effective nucleon-nucleon forces intro-
duced by Migdal [3] take into account a different inter-
action strength inside and outside of the nucleus and the
diffuseness of the nuclear surface by a linear density de-
pendence of the constants.

The second important ingredient of the Eq. (4) is the
friction tensor γkj . The expression for the friction tensor
have been derived applying a linear response theory to
the description of heavy ion collisions. We have assumed
that the Hamiltonian describing an intrinsic motion of the
nucleons in the interacting nuclei and its coupling to the
relative motion can be taken as a sum of the Hamiltonian
of the noninteracting nucleons moving in the time depen-
dent potential, and a residual interaction term. The time
dependent single particle potential is taken as the sum
of the single particle potentials of the interacting nuclei.
Thus,

Ĥ (R(t)) =
A∑
i=1

(−h̄2

2m
∆i + V̂P [ri −R(t)] + V̂T (ri)

)
+ hresidual, (7)

where A = AP + AT is the total number of nucleons in
the system. In the second quantization representation

Ĥ (R(t), ξ) =
∑
P

εP a†P aP +
∑
T

εT a†T aT

+
∑
i,i′

Vii′ (R(t)) a†i ai′ + hresidual, (8)

where ∑
i,i′

Vii′ (R(t)) a†i ai′ =
∑
P,P ′

Λ
(T )
PP ′ (R(t)) a†P aP ′

+
∑
T,T ′

Λ
(P )
TT ′ (R(t)) a†T aT ′

+
∑
T,P

gPT (R(t)) (a†PaT + a†T aP ) . (9)

Here P ≡ (nP , jP , lP ,mP ) and T ≡ (nT , jT , lT ,mT ) are
the sets of quantum numbers characterizing the single par-
ticle states in an isolated projectile and target nuclei, re-
spectively. The other quantities are

Λ
(T )
PP ′ (R(t)) = 〈P |VT (r)|P ′〉, (10)

Λ
(P )
TT ′ (R(t)) = 〈T |VP [r−R(t)]|T ′〉, (11)

gPT (R(t)) =
1
2
〈P |VP [r−R(t)] + VT (r)|T 〉. (12)

In Eq.(8) εP (T ) are single particle energies of the non-
perturbed states in the projectile (target). The diago-
nal matrix elements Λ(T )

PP (Λ(P )
TT ) describe the corrections

to εP (T ). The nondiagonal matrix elements Λ(T )
PP ′ (Λ(P )

TT ′)
generates the particle-hole excitations in the projectilelike
(targetlike) nucleus. The matrix elements gPT are respon-
sible for nucleon exchange between reaction partners.

Basing on the Hamiltonian (8) and applying the for-
malism of the linear response theory we get the following
expression for the friction tensor

γkj [R(t)] =
∑
i,i′

∂Vii′ [R(t)]
∂Rk

∂Vii′ [R(t)]
∂Rj

B
(1)
ii′ (t), (13)

where

B
(n)
ik (t) =

2
h̄

∫ t

0

dt′(t− t′)n exp
(
t′ − t
τik

)
× sin [ωik (R(t′)) (t− t′)] [ñk(t′)− ñi(t′)], (14)

h̄ωik = εi + Λii − εk − Λkk. (15)

Here τij = τiτk/(τi + τk); τi is the parameter describing
the damping of the single-particle motion. The expression
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for τi is derived in the theory of quantum liquids [3,5]
(see Appendix A). The physical meaning of τ is explained
below. This parameter approximately describes the effect
of the residual interaction in H.

The dynamical contribution δV [R(t)] to the nucleus–
nucleus potential is calculated using the expression

δV [R(t)] =
∑
i,i′

∂Vii′ [R(t)]
∂R

∂Vii′ [R(t)]
∂R

B
(0)
ii′ (t), (16)

where B(0)
ii′ (t) is given by Eq. (13).

The third important ingredient of the Eq. (4) is the
reduced mass µ[R(t)] which is calculated using the ex-
pression

µ(R) = mATAP /(AT +AP ) + δµ(R), (17)

where δµ(R) is the dynamic contribution to the reduced
mass. This dynamic correction is calculated using the ex-
pression of the same type as found in the linear response
theory

δµ [R(t)] =
∑
i,i′

∂Vii′ [R(t)]
∂R

∂Vii′ [R(t)]
∂R

B
(2)
ii′ (t), (18)

where B(2)
ii′ (t) is given by Eq. (13).

Since the Eq. (4) is applied only to description of the
initial stage of an interaction of colliding nuclei (capture
probability) we suppose that this approximation is quite
satisfactory.

To calculate all these quantities it is necessary to know
the occupation numbers of the single particle states. Since
the excitation energy of the interacting nuclei changes sig-
nificantly during the course of the collision, it is necessary
to take into account the time dependence of the occupa-
tion numbers. It has been done by a numerical solution
of the corresponding equations, which has been derived
in [2,6] starting from the von Neumann type equation for
a density matrix and doing some approximations. Since
an explicit allowance for the residual interaction is very
complicated it is customary to take into account a two–
particle collision term in the linearized form (τ approxima-
tion) [5–7]. Then the equation for density matrix takes the
form

ih̄
∂ ˆ̃n(t)
∂t

= [Ĥ(R(t)), ˆ̃n(t)]− ih̄

τ
[ˆ̃n(t)− ˆ̃n

eq
(R(t))] , (19)

where ñeq(R(t)) is the local quasi-equilibrium distribution
function of nucleons over the single particle state, i.e. a
Fermi distribution with the temperature Θ(t) correspond-
ing to the excitation energy at the internuclear distance
R(t). In derivation of the final equation for the diagonal
matrix elements of ñ(t), which are the occupation num-
bers of the single particle states ni(t), it was assumed also
that the phases of the nondiagonal matrix elements of ñ(t)
are chaotic.

Fig. 1. The calculated capture cross section as a function of
the beam energy for the 48Ca + 244Pu (I) (full circles), 74Ge
+ 208Pb (II) (full triangles), and 76Ge + 208Pb (III) (open
triangles) reactions; Bi is the Bass barrier for the reaction (i),
i=I, II, and III

3 Results and discussion

3.1 Capture cross section

We consider below the following reactions which are dis-
cussed now as possible ways to search for superheavy el-
ement with Z = 114. They are 48Ca + 244Pu (I) and
74,76Ge + 208Pb (II,III).

Basing on the dynamic model developed in [1] (which
is described concisely in the preceding section) we have
calculated the capture cross section σcapture

l (E) for the
reactions under consideration. The results are shown in
Fig. 1. It is seen that, for these reactions there is an en-
ergy window for the values of the bombarding energy at
which a capture cross section is large enough to have a
physical interest. The lower limit for the bombarding en-
ergy (Emin) is defined by a total nucleus-nucleus interac-
tion potential V (R) = V0(R) + δV (R). Note that Emin is
somewhat larger than the value of the entrance Coulomb
barrier, because of the kinetic energy loss due to friction.
So, Emin is determined by a dynamic calculation. The up-
per limit (Emax) comes from an incomplete dissipation
of the relative kinetic energy. Thus, the values of Emin

and Emax are determined by the depth of the pocket in
the potential V (R) (Fig. 2) and by dissipative forces. If
a bombarding energy is larger than Emax the dissipative
forces could not provide a complete dissipation of the rel-
ative kinetic energy and dinuclear system decays into two
fragments instead of being fused. As it is seen from Fig. 1,
reaction with the lighter projectile (I) has a larger value
of the capture cross section than other two reactions (II)
and (III). The reason is that for 48Ca + 244Pu reaction
the pocket of the nucleus–nucleus interaction potential is
deeper and wider than for 74,76Ge + 208Pb (see Fig. 2).

The potentials presented in Fig. 2 are calculated taking
into account a deformation of the interacting nuclei assum-
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Fig. 2. The nucleus-nucleus interaction potential calculated
for 76Ge + 208Pb (solid curve), 74Ge + 208Pb (dotted curve)
and 48Ca + 244Pu (dashed curve) reactions; Bi is the Bass
barrier for the reaction (i), i=I, II, and III

ing the tip-tip orientation of the colliding projectile and
target nuclei. For other orientations of the colliding nu-
clei the potential is more flat and the depth of the pocket
is smaller. Moreover, in these cases an entrance barrier
and the minimum of the pocket of V (R) have larger ab-
solute energies than in the case of the tip-tip orientation.
Therefore, an excitation energy of a compound nucleus
will be larger than in the last case. An excess of the exci-
tation energy will decrease the survival probability of the
evaporation residues. Thus, in the fusion of massive nu-
clei their mutual orientation strongly influences not only
the capture cross section but also the probability that the
compound nucleus survives during deexcitation.

The existence of the window for the bombarding en-
ergy has a crucial influence on the fusion process. From
one side a larger bombarding energy will be needed to
overcome an intrinsic barrier (B∗fus) to form a compound
nucleus. From other side an increase of the bombarding en-
ergy decreases the capture probability starting from some
values of the bombarding energy because the friction force
is not strong enough to provide a complete dissipation of
the kinetic energy.

3.2 Excitation energy

To overcome an inner barrier for fusion a dinuclear system
should have the corresponding excitation energy. However,
the possible values of the excitation energy of a dinuclear
system E∗DNS which are defined by the amount of a dissi-
pated energy are restricted by the framework of the energy
window for bombarding energies leading to capture. The
possible values of the excitation energy can be estimated
using the expression

E∗DNS = Ec.m. − V (Rm), (20)

where V (Rm) is the value of the nucleus-nucleus interac-
tion potential at the minimum. The results are shown in

Fig. 3. The excitation energy of a dinuclear system formed
after capture of nuclei in reactions: 48Ca + 244Pu (full circles),
74Ge + 208Pb (full triangles), and 76Ge + 208Pb (open trian-
gles) as a function of the beam energy in the center of mass
system

Fig. 3. For 48Ca + 244Pu reaction the excitation energy of
a dinuclear system can take the values from 19 MeV up
to 41 MeV.

In the case of 74,76Ge + 208Pb reactions, the excitation
energy E∗DNS takes the values between 6 MeV and 16
MeV. These values of a dinuclear system excitation
energy should be compared with the values of the inner
barrier for fusion in the models of fusion process. An
increase of the beam energy in order to obtain a larger
excitation energy does not help because dinuclear system
can not be formed. The corresponding value of the beam
energy will exceed Emax.

3.3 Remarks on fusion probability

To analyse a fusion process further we need in a dynamic
model which describes an evolution of a dinuclear system
to compound nucleus formation. Below we will use a model
developed in [8] which is successful in an explanation of
a data on fusion of massive nuclei [9]. According to this
model a dinuclear system evolves to the compound nucleus
by increasing its mass asymmetry. Therefore, the carefully
calculated driving potential plays the main role in a fusion
dynamics. It was calculated as follows,

U(Z,A; l) = B1(Z;A) +B2(ZP + ZT − Z;AP +AT −A)
+ V (Z,A;Rm, l)−B0, (21)

where B1 and B2 are the binding energies [10,11] of the
nuclei in a dinuclear system, V (Rm) is the value of the
nucleus–nucleus interaction potential at the minimum, B0

is the binding energy of the compound nucleus. For the
given charge asymmetry the A/Z ratio was determined
from the minimum value of U(Z,A; l). So, a dinuclear sys-
tem, which is formed after the capture at initial stage,
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Fig. 4. The driving potential for the superheavy element
292114. The arrow indicates an initial charge asymmetry which
corresponds to the 48Ca + 244Pu reaction

Fig. 5. The driving potential for the superheavy element
282114. The arrow indicates an initial charge asymmetry which
corresponds to 74Ge + 208Pb reaction

should overcome the maximum of the driving potential to
be fused. The calculated driving potentials for the reac-
tions which we consider are presented in Figs. 4-6. As it is
seen the values of the barriers which should be overcome
to be fused (B∗fus) depend on the compound system and
the reaction choice which determines the initial value of
the mass asymmetry. These barriers are equal to 7 MeV
for 48Ca + 244Pu (Fig. 4) and 30, 32 MeV for 74,76Ge
+ 208Pb (Figs. 5 and 6), respectively. Thus, in 48Ca +
244Pu reaction the excitation energy of the dinuclear sys-
tem which takes the values between 19 MeV and 41 MeV
is larger than the barrier B∗fus of the driving potential. In
the case of 74,76Ge + 208Pb reaction the excitation en-
ergy which takes the values between 6 MeV and 16 MeV
is lower than the value of B∗fus for these reactions. Thus,
according to our calculations of a capture cross section
and the model of fusion suggested in [8], the compound
nucleus can not be formed with a measurable cross sec-

Fig. 6. The driving potential for the superheavy element
284114. The arrow indicates an initial charge asymmetry which
corresponds to 76Ge + 208Pb reaction

tion in the 74,76Ge + 208Pb reactions. However, it is not
excluded that a dinuclear system can prefer the trajectory
in the R−Z plane for fusion different from that suggested
in [8] or other mechanism of the compound nucleus for-
mation like cluster transfer [12] might play an important
role.

The other question concerns the probability that the
excited compound nucleus formed in a fusion process sur-
vives during deexcitation. An increase of an excitation en-
ergy decreases the influence of the shell effects on stability
of a compound nucleus and decrease the fusion probabil-
ity. However, this question is not analysed in the present
paper.

4 Conclusion

We have analysed the partial fusion cross sections for
the reactions with massive nuclei leading to compound
nucleus with Z = 114: 48Ca + 244Pu and 74,76Ge +
208Pb. The main attention is paid to the calculations of
the capture probability, which is a characteristic feature
of an initial stage of the collision. It is shown that for
the considered reactions, there is an energy window for
the bombarding energy at which the capture cross sec-
tion is large enough to have a physical interest. This re-
sult puts a strong limitations on the choice of the bom-
barding energy for a given reaction. However, from other
side, the excitation energy should be large enough to over-
come an intrinsic barrier for the fusion [8]. Thus, both
restrictions can be used to obtain an optimal choice of
the projectile-target combination and of the bombarding
energy.
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Appendix A

The value of τi is calculated using the results of the theory
of quantum liquids [3,5]

1

τ
(α)
i

=
√

2π

32h̄ε(α)
FK

[
(fK − g)2 +

1
2

(fK + g)2

]
×
[(
πΘK

)2

+
(
ε̃i − λ(α)

K

)2
]

×
[
1 + exp

(λ(α)
K − ε̃i
ΘK

)]−1

, (A1)

where

ΘK(t) = 3.46

√
E∗K(t)

< AK(t) >

is the effective temperature determined by the amount
of intrinsic excitation energy E∗K = E

∗(Z)
K + E

∗(N)
K ;

< AK(t) >=< ZK(t) > + < NK(t) >, λ(α)
K (t) , and

E
∗(α)
K (t) are the mass number, chemical potential, and

intrinsic excitation energies for the proton (α = Z) and
neutron (α = N) subsystems of the nucleus K(K = P, T ),
respectively, (for details, see [6]). Furthermore, the finite
size of nuclei and the available difference between the num-
bers of neutrons and protons need to use the following
expressions for the Fermi energies [3]:

ε
(Z)
FK

= εF

[
1− 2

3
(
1 + 2f ′

)< NK > − < ZK >

< AK >

]
, (A2)

ε
(N)
FK

= εF

[
1 +

2
3
(
1 + 2f ′

)< NK > − < ZK >

< AK >

]
, (A3)

where εF=37 MeV,

fK = fin −
2

< AK >1/3
(fin − fex),

f ′K = f ′in −
2

< AK >1/3
(f ′in − f ′ex)

and fin=0.09, f ′in=0.42, fex=-2.59, f ′ex=0.54, g=0.7 are
the constants of the effective nucleon-nucleon interaction.
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11. P. Möller and J.R. Nix, Preprint LA-UR-86-3983, Los

Alamos National Laboratory, 1986
12. A.G. Popeko, Nuovo Cim. 110A No. 9-10, (1997) 1137


